Dec 11th 2020 Jaarsymposium Circulaire Maakindustrie

[Workshop] Building a resilient supply chain for Critical Raw Materials (CRMs) in the telecommunication sector

Energy Management & Circular Economy Team of KPN Yeji Park – Researcher Circularity for Critical Raw Materials Gloria Flik – Researcher Critical Raw Materials for Future Technologies

Introduction

Gloria Flik

Critical Raw Materials for Future Technologies

Yeji Park Circularity of Critical Raw Materials

Contents

I. Presentation

10:05 Material Criticality for the core and future equipment Gloria Flik | Researcher Critical Raw Materials for future technologies

10:10 Achieving a circular use of CRMs Yeji Park | Researcher Circularity of Critical Raw Materials

II. Workshop
10:15 Brainstorming session on Miro
10:35 Discussion
10:55 Closing

What are critical raw materials (CRMs)?

As defined by the European Union [1]

Biggest supplier countries of CRMs in the EU

Critical raw materials

- Economic importance
- Supply risk

Reasons for material criticality [3]:

- Scarcity Risk
- Geopolitical Risk
- Demand Risk
- Environmental Risk
- Supply Chain Risk
- Market Risk
- Social Risk

Source: European Commission report on the 2020 criticality assessment

[2]

How to start?

From the equipment to the mitigation strategy

trychogen 1 H																		2 He
ithium 3	berytum 4												5	carbon 6	ntrogen 7	congen 8	fuotine 9	noon 10
Li	Be												В	С	N	0	F	Ne
sodium 11	magnesium 12												duration 13	silicon 14	phosphorus 15	sutur 16	chiorino 17	20180 20305 18
Na	Ma												AL	Si	P	S	CI	Ar
22.990 rothsshire	24.385		scontum	flicer.	vasatum	chronium	nonconese	ine	othell	and	contract	286	26.962	28.006	30.974	32.065	35.453	33.948
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	11	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
rutidare 37	stronture 38		yttinin 39	zitoonium 40	ricours 41	molybdenum 42	technetium 43	reforease 44	notem 45	palatum 46	silver 47	codman 48	10km	50	51	telatum 52	iodine 53	xenon 54
Rb	Sr		Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Aq	Cd	In	Sn	Sb	Te	Ĩ.	Xe
85,468	87.62		00.905	91.224	92,995	\$5.94	[98] (hotket)	101.07	102.91	106.42	107.87	112.41	154.82 Bodern	119.71	121.76	127.60	126.90	131.29
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	VV	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 trandum	radium	00.400	174.97 lawrendum	178.49 ratherfordkers	d.triara	seaborplum	196.21 bohrium	hassium	mothedum	ununsikra	196.97 ununum	200.59 ununbium	204.38	207.2 Unitequadram	208.58	209	210	2221
Er	Ra	* *	103	Rf	Dh	Sa	Bh	He	Mt	Llun	1 hours	Hub		Llug				
1223	1226		[262]	[261]	12621	peq	[264]	113	[268]	[271]	12721	12771		12004				
					_	_												
			57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
			138.01 actinium	540.12 Toolum	protactinium	144.24 uranium	[145] neptuniura	150.00 ph/tonium	155.96 americium	157.25 Outlum	158.93 berkelure	californium	164.93 cinsteinkum	.167.26 Semium	168.93 mendelevlur	173.04 nobelium		
			Ac	Th	Da	92	Np	Du	Am	Cm	BL	Cf	Fe	Em	Md	No		(7)
			1227]	232.04	231.04	238.03	180	[244]	1243	[247]	[247]	1251	[252]	[257]	1258	125%		

Step 1 + 2 : Identification of Core equipment & Raw Material Content Close collaboration with suppliers necessary

Step 3: Criticality Assessment

Examples based on literatures

Step 4: EU Critical materials in KPN products

Occurence in KPN products

Data on 4 products

Number of products the material is contained in:

From simple PCBs

1 2 3 4

on EU list

Core router

Blade Server

?

Mitigation strategies

Example: Rhodium

Rhodium (Rh)

Mitigation strategy

Function:

- Plating of electric contacts
- Constituent of capacitors and resistors

Hotspots

Companion metal, hardly substitutable Political stability/regulations 80% South Africa

Associated risk		Internal & External							
Economic risk]	 Design for reuse/refurbishment/recyclability Use secondary material source Substitution to non-critical materials 							
 Environmental risk Social risk]	 Transparency Due diligence on suppliers Sourcing CERA (CErtification of RAw Materials) certified components/materials 							

Systemic

- Demand-based recycling targets
- Research subsidies and standardization
- Trade agreements

- Translating externalities into pricing
- Trade agreements incl. social and environmental conditions for goods

Achieving the circular use of CRMs

Expansion of CE application from mass material to CRMs

Critical raw materials

Improving the circularity of CRMs in KPN's equipment

Research plan and main concepts

Circular strategy for CRMs

Example of three CRMs commonly used in ICT device

Modem

Case example: Circular strategy for three CRMs

Product value chain of ICT equipment

Cradle to grave value chain

Case example: Circular strategy for three CRMs

Product value chain with specifications on CRM contents

Cradle to grave value chain

CRMs flow throughout product value chain Case example of 3 CRMs

16

Cradle to grave value chain

CRMs application in other industries

CRMs circularity: crucial topic to a wide range of industries

LCD

Solar panel

Semiconductor

Optoelectronic

31 Ga Gallium 69.723

Workshop

First please follow our instruction on the shared screen And then enter the Miro link shared in the chat!

Discussion

Contact information

Gloria Flik gloria.flik@kpn.com

Yeji Park yeji.park@kpn.com

References

[1] British Geological Survey, Bureau de Recherches Géologiques et Minières, Deloitte Sustainability, European Commission, Directorate-General for Internal Market, I., Entrepreneurship and SMEs, & Toegepast natuurwetenschappelijk onderzoek. (2017). Study on the review of the list of critical raw materials: Final report. <u>http://dx.publications.europa.eu/10.2873/876644</u>

[2] Gislev, M., Grohol, M., Mathieux, F., Ardente, F., Bobba, S., Nuss, P., Blengini, G. A., Dias, P. A., Blagoeva, D., Torres De Matos, C., Wittmer, D., Claudiu, P., Hamor, T., Saveyn, H., Gawlik, B., Orveillon, G., Huygens, D., Garbarino, E., Tzimas, E., ... Directorate-General for Internal Market, I., Entrepreneurship and SMEs. (2018). Report on critical raw materials and the circular economy. http://publications.europa.eu/publication/manifestation_identifier/PUB_ET0418836ENN

[3] Griffin, G., Gaustad, G., & Badami, K. (2019). A framework for firm-level critical material supply management and mitigation. *Resources Policy*, 60, 262–276. <u>https://doi.org/10.1016/j.resourpol.2018.12.008</u>

[4] Kolotzek, C., Helbig, C., Thorenz, A., Reller, A., & Tuma, A. (2018). A company-oriented model for the assessment of raw material supply risks, environmental impact and social implications. *Journal of Cleaner Production*, 176, 566–580. <u>https://doi.org/10.1016/j.jclepro.2017.12.162</u>

[5] Helbig, C.; Wietschel, L.; Thorenz, A.; Tuma, A. (2016). How to evaluate raw material – An overview. Resources Policy 48, 13-24. http://dx.doi.org/10.1016/j.resourpol.2016.02.003.

[6] Achzet, B.; Helbig, C. (2013). How to evaluate raw material supply risks – An overview. Resources Policy, 435-447. http://dx.doi.org/10.1016/j.resourpol.2013.06.003.

[7] T. E. Graedel, Rachel Barr, Chelsea Chandler, Thomas Chase, Joanne Choi, Lee Christoffersen, Elizabeth Friedlander, Claire Henly, Christine Jun, Nedal T. Nassar,* Daniel Schechner, Simon Warren, Man-yu Yang, and Charles Zhu (2011). Methodology for Material Criticality Determination. Center for Industrial Ecology. Environ. Sci. Technol. 2012, 46, 1063 – 1070.

[8] European Commission. (2018). Report on Critical Raw Materials in the Circular Economy. Retrieved from https://op.europa.eu/en/publication-detail/-/publication/d1be1b43-e18f-11e8-b690-01aa75ed71a1/language-en/format-PDF/source-80004733

[9] Işıldar, A., Rene, E. R., van Hullebusch, E. D., & Lens, P. N. L. (2018). Electronic waste as a secondary source of critical metals: Management and recovery technologies. Resources, Conservation and Recycling, 135, 296–312. <u>https://doi.org/10.1016/j.resconrec.2017.07.031</u>

[10] Chancerel, P., Rotter, V. S., Ueberschaar, M., Marwede, M., Nissen, N. F., & Lang, K.-D. (2013). Data availability and the need for research to localize, quantify and recycle critical metals in information technology, telecommunication and consumer equipment. Waste Management & Research, 31(10_suppl), 3–16. <u>https://doi.org/10.1177/0734242x13499814</u>